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ABSTRACT 
 
In 2010, Khmelnik has developed his theoretical method applicable for resolving problems existing in mechanics, 
electrodynamics, electrical engineering, hydrodynamics. For hydrodynamics, this method allowed for Khmelnik to 
resolve the Navier-Stokes equations. However, this work by Khmelnik is not widely known. As a result, there are still 
both analytical and numerical attempts to find a suitable method of resolving of the Navier-Stokes equations. The work 
by Khmelnik provides the obtained results in both analytical forms and color graphical three-dimensional illustrations. 
Therefore, this review has the purpose to briefly acquaint the reader with the resolving method that was successfully 
applied to the Navier-Stokes equations and the other problems in physics. 
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INTRODUCTION  
 
It is mentioned in (Bratsun and Vyatkin, 2019) that in 
hydrodynamics at pre-computer times, to find exact 
solutions for some cases described by hydrodynamic 
equations was irreplaceable event. Indeed, to obtain exact 
solutions means to have the key tools for fluid motions’ 
obtaining information. Let’s mention here some classical 
examples: the Taylor flow confined between two rotating 
coaxial cylinders (Taylor, 1923), the Poiseuille flow in a 
pipe under applied pressure drop (Poiseuille, 1840), and 
the Couette flow between two surfaces, one of which is 
moving tangentially relative to the other (Couette, 1890). 
 
However, there are problems in hydrodynamics that still 
are unresolved during the last centuries. One of such 
problems is the Navier-Stokes equations. The importance 
of resolving of the Navier-Stokes equations consists in 
their multi-promising applications. As a result, the Clay 
Mathematics Institute (CMI), see here 
http://www.claymath.org/millennium-
problems/navier%E2%80%93stokes-equation, has 
included this problem in the list of the seven most 
important mathematical problems to be resolved in this 
millennium, see also in (Ladyzhenskaya, 2003). 
Khmelnik from Israel has stated that he has resolved the 
Navier-Stokes equations and he has published his method 
of resolving of the Navier-Stokes equations in 2010 in 
both Russian (Khmelnik, 2010a) and English (Khmelnik, 
2010b). Several years ago, Dr. Khmelnik has contacted to 

the Clay Mathematics Institute, sending his book with his 
method of resolving of the Navier-Stokes equations and 
claiming that he has resolved this problem. The Clay 
Mathematics Institute has answered that somebody (but 
not Dr. Khmelnik himself) should introduce the work by 
Khmelnik to the CMI in or-der that the CMI can treat his 
method. 
 
This review has the purpose to quaint the reader with 
already the sixth edition (Khmelnik (2021)) of his results 
initially published in 2010 (Khmelnik, 2010a, 2010b). 
This last sixth edition of the book represents the three-
books-in-one edition because two books by Khmelnik 
(2018a, 2018b) with the computer programs in the 
MATLAB codes and their explanations, respectively, 
were added as Appendices 8 and 9 to the fifth edition 
(Khmelnik, 2018c) of his book to compose the sixth 
edition. So, the book by Khmelnik (2021) is 
supplemented by the corresponding computer program 
codes of the MATLAB platform, namely by functions 
that realize the calculation method and the computer 
program test codes.  
 
In his book, Khmelnik (2010b, 2018, 2021) starts with the 
Lagrangian formalism in Chapter 1 and introduces the 
Energian that can be understood as an extended or 
modified Lagrangian. It is well-known that the 
Lagrangian formalism is used for many problems of 
physics, for instance, it was recently applied for 
antimatter gravity study (Jentschura, 2020). So, the main 
formulas in the book Khmelnik (2021) are written down 
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in Chapters 1 and 2 as well as in the appendices from 1 to 
7. The obtained method by Khmelnik can be applied to 
many problems. Today the reader can find a lot of 
literature where the Navier-Stokes equations are used. For 
instance, within the last several years it is possible to find 
~ 100 published papers among only the MDPI Journals 
such as Mathematics, Fluids, and Mathematical and 
Computational Applications. This review has no objective 
to review all of them. However, it is possible to mention 
some of them to demonstrate different problems where 
the Navier-Stokes equations can be applied.  
 
Ersoy et al. (2021) have derived the model via asymptotic 
reduction from the two-dimensional Navier-Stokes 
equations under the shallow water assumption, with 
boundary conditions including recharge via ground 
infiltration and runoff. Ersayın and Selimefendigil (2013) 
have numerically investigated the effects of various 
parameters such as nanoparticle volume fraction, 
pulsating frequency, plate velocity, Reynolds number on 
the heat transfer characteristics, where the Navier-Stokes 
equations and energy equations are solved with a 
commercial finite volume based code. Moschandreou 
(2018) has proposed a solution to the three-dimensional 
Navier-Stokes equations in the cylindrical coordinates 
coupled to the continuity and level set convection 
equation. Akkari et al. (2019) have considered the 
problem of constructing a time stable reduced order 
model of the three-dimensional Navier-Stokes equations 
in the incompressible and turbulent case. Semenov (2014) 
has discussed the exact estimates for solutions in the 
Cauchy problem for the Navier-Stokes equations and 
Euler equations. Metivet et al. (2018) have presented the 
simulation of multifluid flows based on the implicit level-
set representation of interfaces and on an efficient solving 
strategy of the Navier-Stokes equations. In the study by 
Kang and You (2021), a cell-centered finite-volume 
method for compressible Naiver-Stokes equations was 
developed. Saito (2021) has shown time-decay estimates 
of solutions to linearized two-phase Navier-Stokes 
equations with surface tension and gravity. Galdi (2021) 
has provided conditions for the occurrence of time-
periodic Hopf bifurcation for the coupled system 
constituted by a rigid sphere moving under gravity in a 
Navier-Stokes liquid. The paper by Azlan et al. (2021) 
has studied the linearized problem for the compressible 
Navier-Stokes equation around space-time periodic state. 
Kubo and Shibata (2021) have treated the problem 
formulated mathematically by the Navier-Stokes 
equations in a time-dependent domain separated by an 
interface, where one part of the domain is occupied by a 
compressible viscous fluid and another part by an 
incompressible one. Aksenov and Polyanin (2021) have 
described a number of simple methods for constructing 
exact solutions of nonlinear partial differential equations, 
including the Navier-Stokes equations, that involve a 
relatively small amount of intermediate calculations. 

Bourantas (2021) has studied a model consisting of the 
Navier-Stokes equations expressed in the velocity-
vorticity variables including the energy and microrotation 
transport equation. For the Navier-Stokes equations, 
Yakhlef and Murea (2021) have used the fictitious 
domain method with penalization. Mimeau and Mortazavi 
(2021) have reviewed the vortex methods belonging to 
Lagrangian approaches and allowing one to solve the 
incompressible Navier-Stokes equations in their velocity-
vorticity formulation. The work by Sarthou et al. (2020) 
has studied the interactions between fictitious-domain 
methods on structured grids and velocity–pressure 
coupling for the resolution of the Navier-Stokes 
equations. Murea (2019) has used the updated Lagrangian 
framework for the linear elasticity equation modeling the 
structure and the Navier-Stokes equations governing the 
fluid. In (Jabbari et al., 2019), a first-order projection 
method was used to numerically solve the Navier-Stokes 
equations for a time-dependent incompressible fluid 
inside a 3D lid-driven cavity. 
 
Also, there are a lot of publications where the method 
called the Reynolds-averaged Navier-Stokes equations (or 
RANS equations) is used. among the aforementioned 100 
articles on the Navier-Stokes equations, at least half of 
them refers to this specified method. For instance, Huilier 
(2021) has stated that instead of Reynold-Averaged 
Navier-Stokes (RANS)-based studies, the computer 
evolution and performance allowed development of large 
eddy simulation (LES) and direct numerical simulation 
(DNS) of turbulence coupled to Generalized Langevin 
Models. A dual approach is applied in (Wenig et al., 
2021), in which the LES is used as reference for the 
unsteady RANS computations. Mai and Ryu (2021) have 
used the RANS equation coupled with the turbulence 
model to solve the problem of high-speed and high-
pressure compressible flow through the gas-turbine 
model. In (Lluesma-Rodríguez et al., 2021), it was 
designed a numerical method to solve the time-dependent 
incompressible 3D Navier-Stokes equations in turbulent 
thermal channel flows. Also, Lluesma-Rodríguez et al. 
(2021) state that it is well-known that we still even lack 
an existence and uniqueness theorem about the solution of 
the governing equations of turbulent flows, the Navier-
Stokes equations.  
 
In Chapter 4 of the book by Khmelnik (2021), it is 
discussed that strictly speaking the treated RANS 
equations cannot be called Navier-Stokes equations and 
the considered method of constructing the functional is 
not applicable to them. In Chapter 10 of the book, the 
other method of calculation of turbulent flows is 
demonstrated. For turbulent flows, some equations similar 
to the Navier-Stokes equations can be obtained. Next, a 
functional can be constructed for the obtained turbulent 
flow equations and these equations represent the 
necessary conditions for the existence of the extremum 
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for this constructed functional. The turbulent flow 
equations are equations (10.8.1) and (10.8.1) in 
Subsection 10.8 of Chapter 10 in the book by Khmelnik 
(2021). This functional is not convex. Therefore, there 
may be more than one solution for these turbulent flow 
equations, read the context after equation (10.8.9) in 
Subsection 10.8. However, there are flows with weak 
turbulences, which can be represented by the sum of a 
high-speed laminar flow and a turbulent flow with 
relatively low speeds. Such flows are described by two 
independent set of equations and there are unique 
solutions for each of these sets, see the algorithm at the 
end of Subsection 10.8.  
 
The author of this review is familiar with many published 
papers and books by Solomon Itskovich Khmelnik from 
Israel, including his work on the Navier-Stokes equations 
(Khmelnik, 2021)and has contacts with him already 
during the last two years. The author has found that 
Khmelnik has developed a variational principle that can 
be applied to dissipative systems. This review has no aim 
to rewrite all the results obtained by Khmelnik (the reader 
must read his book (Khmelnik, 2021)) but only concisely 
acquaints the reader with the main results obtained by 
Khmelnik and states that namely the Navier-Stokes 
equations were resolved by Khmelnik in 2010, according 
to his first work published in both Russian (Khmelnik, 
2010a) and English (Khmelnik, 2010b).  
 
The concise description of the method by Khmelnik 
(2021)  
If in the existing principle the integrand is the difference 
between the kinetic energy and the potential energy, then 
in the proposed functional the integrand is the difference 
(ΔH) between the kinetic energy and the sum of the 
potential and thermal energies. In the absence of a 
dissipation process, such an expression turns into 
Lagrangian. When constructing a functional, each desired 
function splits into two independent functions, and the 
functional contains pairs of such split functions. The 
integrand itself depends on pairs of independent split 
functions. The optimum of a functional is the saddle point 
where one group of split functions minimizes the 
functional and the other maximizes it. The sum of the pair 
of optimal values of these split functions gives the desired 
function. The variational principle in this case states that 
the extremals of this functional (defining the saddle point) 
are real dynamic variables that can be realized in reality. 
Khmelnik calls it the principle of general action. 
 
This principle allows one to design a functional for 
various physical systems and, most importantly, for 
dissipative systems. This functional has a global saddle 
point. Therefore, to calculate physical systems with this 
functional, one can apply the method of gradient descent 
to the saddle point. The solution always exists because the 
global extremum exists. The initial step in constructing 

this functional is as follows: for some physical system, the 
energy conservation equation or the power balance 
equation is written, taking into account both energy losses 
(for instance, friction or heating) and the flow of energy 
into and out of the system. 
 
The proposed variational principle allows one to construct 
a functional for various physical systems with a single 
saddle point of the optimum. Khmelnik also proposed a 
computational method for moving to the saddle point, 
which allows one to calculate the extremals of this 
functional. Therefore, the real equations of motion for 
some treated system can be determined. Thus, the new 
formalism is not only a universal method for deriving 
physical equations from a certain principle but also a way 
to calculate these equations. 
 
Khmelnik has applied this principle to various physical 
problems. First of all, the proposed formalism is 
applicable to electrical circuits. It should be noted that for 
DC circuits (where there are only resistances) the solution 
was found by Maxwell, who showed that the currents are 
distributed in such a way that they minimize heat losses. 
However, for AC electrical circuits, a principle similar to 
the principle of least action has not yet been found in spite 
of the fact that there were many attempts. These searches 
are understandable because the absence of the principle of 
extremality for electrical circuits seems strange. The 
proposed variational principle for electrical circuits is 
such that it follows from the Kirchhoff equations for AC 
electrical circuits. This means that there is a definite 
integral of the split functions of charges, which are 
functions of time. This integral has a single optimum 
point and its extremals coincide with the Kirchhoff 
equation. Thus, in the electrical circuit, the principle of 
the extremum of the aforementioned value of ΔH is 
objectively observed. 
 
This functional can be also found for electric power 
systems, which are nonlinear electrical circuits. It is 
shown that the resulting functional is optimized when the 
stationary value of the integrand function is the equation 
of the power system mode. Khmelnik has also 
demonstrated that the solution of a set of linear algebraic 
equations is also reduced to the calculation of an electric 
circuit of sinusoidal currents by the proposed method. It 
was shown that the solution of sets of partial differential 
equations also reduces to the search for the optimum of a 
certain functional. For instance, the equations of Poisson, 
Helmholtz for homogeneous and inhomogeneous media, 
the telegraph equation, and many others can be resolved 
by the proposed method. In addition, this principle is 
generalized to electromechanical systems. For some 
treated electromechanical system, the formed functional 
contains thermal, mechanical, electrical, and magnetic 
energies, functions depending on the configuration of the 
treated system, and functions describing perturbations’ 
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effects both electrical and mechanical. The same method 
can be readily applied to Maxwell's equations, which 
involve currents in a medium with a certain electrical 
conductivity. Therefore, there is a heat loss, i.e. energy 
dissipation. This means that in addition to electric and 
magnetic energies, the functional for the principle of 
minimum action must include thermal energy. Hence, the 
Lagrange formalism for Maxwell's equations is not 
applicable in this case. 
 
It should be mentioned that the calculus of variations has 
one drawback because it is assumed that the functions are 
continuous. In practice, discontinuous functions such as 
the Dirac function and step functions are often found. For 
optimization problems with such functions there is a 
Pontryagin maximum method. Khmelnik has 
demonstrated that the Pontryagin maximum method can 
be combined with the method of gradient motion to the 
saddle point. As a result, an algorithm for resolving a set 
of Maxwell's differential equations with discontinuous 
perturbations is formulated. All calculations in this 
algorithm consist of operations with coefficients of 
polynomial functions. The result is also given in the form 
of polynomial functions, i.e. an analytical solution is 
obtained. 
 
The most interesting thing is how Khmelnik has applied 
this principle in hydrodynamics, namely to the problem of 
proving the uniqueness of the solution of the Navier-
Stokes equations that has not been resolved for the last 
couple of centuries. As an outstanding researcher, 
Khmelnik works alone already for a long time and 
therefore, his results are not widely known, although the 
solution to this problem was first published in 2010 in 
Russian (Khmelnik, 2010a) and then in 2010 in English 
(Khmelnik, 2010b). In this regard, it is necessary to 
briefly describe below the resolving method found by 
Khmelnik. This method is suitable for the three-
dimensional case. It worce here noting that in the two-
dimensional case, the the solution metod has been 
knownfor a long time (Ladyzhenskaya, 1969), also for the 
more difficult case of the Eulerequations. However, this 
gives no hint about the three-dimensional case because 
the maindifficulties are absent in the two-dimensional 
case. 
 
The resolving method by Khmelnik (2021) for the 
Navier-Stokes equations  
First of all, Khmelnik offers that the following functional 
(certain integral) can be called some full action: Φ(ݍ) =
∫ ℜ(ݍ)݀ݐ௧మ
௧భ

, where ℜ(ݍ) = (ݍ)ܭ) − (ݍ)ܲ −  is ((ݍ)ܳ
called the Energian by Khmelnik (by analogy with the 
Lagrangian.) (ݍ)ܳ ,(ݍ)ܲ ,(ݍ)ܭ are the kinetic, potential, 
and thermal energies, respectively. q is a vector of 
generalized coordinates, dynamic variables that depend 
on time t. Here, the integral is taken at a certain time 

interval t1 ≤ t ≤ t2. It should be noted here that when Q = 
0, the functional Φ(ݍ) turns into some action. 
 
Next, it is natural to consider the quasi-extremal of the 
full action, which has the following form:  

ܭ)߲ − ܲ)
ݍ߲

−
݀
ݐ݀
ቆ
ܭ)߲ − ܲ)

ᇱݍ߲
ቇ −

߲ܳ
ݍ߲

= 0 
(1) 

The functional Φ(ݍ) definitely takes an extreme value on 
quasi-extremals. The principle of extremum of full action 
states that the quasi-extremals of this functional are 
equations of real dynamic processes. It is possible to 
determine the extreme value of the functional Φ(ݍ). For 
this purpose, it is possible to split the function q(t) into 
two independent functions x(t) and y(t), and to 
correspondingly treat the following functional instead of 
the functional Φ(ݍ): Φଶ(ݔ, (ݕ = ∫ ℜଶ(ݔ, ݐ݀(ݕ

௧మ
௧భ

 called 
the “split” full action. The function ℜଶ(ݔ,  is called the (ݕ
“split” Energian. This functional is minimized by the 
function x(t) for a fixed function y(t) and maximized by 
the function y(t) for a fixed function x(t). The minimum 
and maximum are the only ones. 
 
Thus, the extremum of the functional Φଶ(ݔ,  is a saddle (ݕ
line, where one group of functions (x0) minimizes the 
functional, and the other (y0) maximizes it. The sum of the 
pair of optimal values of the split functions gives the 
desired function q = x0 + y0, which satisfies the 
aforementioned equation of quasi-extremal (1). In other 
words, the quasi-extremal of the functional Φ(ݍ) is the 
sum of the extremals (x0, y0) of the functional Φଶ(ݔ,  ,(ݕ
which determine the saddle point of this functional. It is 
important to note that this point is the only extreme point 
because there are no other saddle points and no other 
minimum or maximum points. This is the meaning of the 
expression "extreme value on quasi-extremals". The 
statement is that in every field of physics, one can find a 
correspondence between the complete action and the split 
complete action, and thus prove that the complete action 
takes on a global extreme value on quasi-extremals. 
 
In order to show the validity of this statement for 
hydrodynamics, Khmelnik uses the well-known work of 
Umov, who considered for a liquid the condition of the 
balance of specific (by volume) capacities in the liquid 
flow for both incompressible and compressible liquids. 
From this condition, after long transformations, it is 
possible to find the quasi-extremal equation. Next, 
Khmelnik constructs a computational algorithm. 
Stationary and dynamic problems are also considered, and 
the proposed algorithm is implemented in MATLAB 
program codes. Examples of flows are also shown 
graphically and corresponding MATLAB program codes 
are also considered in the book.  
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Let’s also shortly introduce the ten chapters of the book. 
Chapter 1 acquires the reader with the principle of 
extremum of full action. Chapter 2 this principle for 
viscous incompressible fluids. Chapter 3 briefly discusses 
the computational algorithms applied. Chapter 4 concisely 
discusses the method called the Raynolds-average Navier-
Stokes equations (RANS equations) stating that strictly 
speaking the RANS equations cannot be called Navier-
Stokes equations and the method of constructing the 
functional is not applicable to the RANS equations. 
Chapters 5 and 6 treat the stationary and dynamic 
problems, respectively. Chapters 7 and 8 provide the 
following examples: Computations for a mixer and flow 
in a pipe, respectively. In Subsections 7.2 and 7.3 of 
Chapter 7, the polar and Cartesian coordinates are also 
treated. In these chapters, the results are also shown 
graphically in eleven and thirteen figures, respectively, 
some of them are three-dimensional plots. Chapter 9 
describes the principle of extremum of full action for 
viscous compressible fluids. Chapter 10 represents the 
emergence mechanism and calculation method of 
turbulent flows. In this chapter, the results were also 
graphically shown in eleven figures, some of them are 
three-dimensional plots. In addition, this book also 
contains nine appendices, of which the first seven contain 
a lot of complicated formulas used by Khmelnik in his 
work. Appendices 8 and 9 contain the relevant computer 
programs in the MATLAB codes and their explanations, 
respectively.  
 
CONCLUSION  
 
It is suggested that the reader pay attention to the book on 
the obtained method of resolving of the Navier-Stokes 
equations. Indeed, his work has many practical 
applications. 
 
REFERENCES  
 
Akkari, N., Casenave, F. and Moureau, V. 2019. Time 
stable reduced order modeling by an enhanced reduced 
order basis of the turbulent and incompressible 3D 
Navier-Stokes equations. Mathematical and 
Computational Applications. 24(2):45. DOI: 
https://doi.org/10.3390/mca24020045.  

Aksenov, AV. and Polyanin, AD. 2021. Methods for 
constructing complex solutions of nonlinear PDEs using 
simpler solutions. MDPI Mathematics. 9(4):345. DOI: 
https://doi.org/10.3390/math9040345.   

Azlan, MN., Enomoto, S. and Kagei, Y. 2021. On the 
spectral properties for the linearized problem around 
space-time-periodic states of the compressible Navier-
Stokes equations. MDPI Mathematics. 9(7):696. DOI: 
https://doi.org/10.3390/math9070696.  

Bourantas, GC. 2021. Micropolar blood flow in a 
magnetic field. MDPI Fluids. 6(3):133. DOI: 
https://doi.org/10.3390/fluids6030133.  

Bratsun, D. and Vyatkin, V. 2019. Closed-form non-
stationary solutions for thermo and chemovibrational 
viscous flows. MDPI Fluids. 4(3):175. DOI: 
https://doi.org/10.3390/fluids4030175.  

Couette, M. 1890. Ètudessur le frottement des liquides. 
Ann. Chim. Phys. 21:433-510.  

Ersayın, E. and Selimefendigil, F. 2013. Numerical 
investigation of impinging lets with nanofluids on a 
moving plate. Mathematical and Computational 
Applications. 18(3):428-437. DOI: 
https://doi.org/10.3390/mca18030428.  

Ersoy, M., Lakkis, O. and Townsend, P. 2021. A Saint-
Venant model for overland flows with precipitation and 
recharge.Mathematical and Computational Applications. 
26(1):1. DOI: https://doi.org/10.3390/mca26010001.  

Galdi, GP. 2021. On time-periodic bifurcation of a sphere 
moving under gravity in a Navier-Stokes liquid. MDPI 
Mathematics. 9(7):71. DOI: 
https://doi.org/10.3390/math9070715.  

Huilier, DGF. 2021. An overview of the Lagrangian 
dispersion modeling of heavy particles in homogeneous 
isotropic turbulence and considerations on related LES 
simulations. MDPI Fluids. 6(4):145. DOI: 
https://doi.org/10.3390/fluids6040145.  

Jabbari, M., McDonough, J., Mitsoulis, E. and Hattel, JH. 
2019. Application of a projection method for simulating 
flow of a shear-thinning fluid. MDPI Fluids. 4(3):124. 
DOI: https://doi.org/10.3390/fluids4030124.  

Jentschura, UD. 2020. Antimatter gravity: Second 
quantization and Lagrangian formalism. MDPI Physics. 
2(3):397-411. DOI: 
https://doi.org/10.3390/physics2030022.  

Kang M. and You, D. 2021.A low dissipative and stable 
cell-centered finite volume method with the simultaneous 
approximation term for compressible turbulent 
flows.MDPI Mathematics. 9(11):1206. DOI: 
https://doi.org/10.3390/math9111206.  

Khmelnik, SI. 2010a. Navier-Stokes Equations.On the 
Existence and the Search Method for Global Solutions. 
Published by “MiC” - Mathematics in Computer Corp., 
printed in the USA, Lulu Inc., ID 8828459, Israel. ISBN 
978-0-557-48083-8 (in Russian). DOI: 
https://doi.org/10.5281/zenodo.5057229.  

Khmelnik, SI. 2010b. Navier-Stokes Equations.On the 
Existence and the Search Method for Global Solutions (1st 
ed.). MiC - Mathematics in Computer Corp., Lulu Inc., 
USA. ID 9036712, Israel. ISBN 978-0-557-54079-2. (In 
English) DOI: https://doi.org/10.5281/zenodo.5037593.  



Canadian Journal of Pure and Applied Sciences 5358

Khmelnik, SI. 2018a. PROGRAMS for Solving the 
Equations of Hydrodynamics in the MATLAB SYSTEM. 
MiC- Mathematics in Computer Corp. Lulu Inc., USA. ID 
22833773, Israel. ISBN978-1-387-77626-
9.http://www.lulu.com/content/22833773 

Khmelnik, SI. 2018b. Fluid Flow in Tube with Obstacle: 
The New Calculation Method and the MATLAB-
program. MiC - Mathematics in Computer Corp. Lulu 
Inc., USA. ID 22407028, Israel. ISBN978-1-387-50952-
2. DOI: https://doi.org/10.5281/zenodo.3924902.  

Khmelnik, SI. 2018c. Navier-Stokes Equations.On the 
Existence and the Search Method for Global Solutions. 
(5th ed.). MiC- Mathematics in Computer Corp., Lulu Inc., 
USA.  ID 9971440, Israel. ISBN 978-1-4518-1953-1. (In 
English) DOI: https://doi.org/10.5281/zenodo.1307614.  

Khmelnik, SI. 2021. Navier-Stokes Equations. On the 
Existence and the Search Method for Global Solutions. 
(6th ed.). MiC - Mathematics in Computer Corp., Lulu 
Inc., USA.  ID kg2gpm, Israel. ISBN 978-1-6780-5491-5. 
(In English) DOI: http://doi.org/10.5281/zenodo.5090021 

Kubo, T. and Shibata, Y. 2021. On the evolution of 
compressible and incompressible viscous fluids with a 
sharp interface. MDPI Mathematics. 9(6):621. DOI: 
https://doi.org/10.3390/math9060621.  

Ladyzhenskaya, OA. 1969. The Mathematical Theory of 
Viscous Incompressible Flows. (2nd ed.). Gordon and 
Breach, New York, USA. 

Ladyzhenskaya, OA. 2003. Sixth problem of the 
millennium: Navier-Stokes equations, existence and 
smoothness. Russian Mathematical Surveys. 58(2):251-
286. DOI:https://doi.org/ 10.1070/ RM2003v058n02AB 
EH000610.  

Lluesma-Rodríguez, F., Álcantara-Ávila, F., Pérez-
Quiles, MJ.and Hoyas, S. 2021. A code for simulating 
heat transfer in turbulent channel flow.MDPI 
Mathematics.9(7):756.DOI:https://doi.org/10.3390/math9
070756.  

Mai, TD. and Ryu, J. 2021. Effects of damaged rotor 
blades on the aerodynamic behavior and heat-transfer 
characteristics of high-pressure gas turbines. MDPI 
Mathematics. 9(6):627. DOI: https://doi.org/ 10.3390/ 
math9060627.  

Metivet, T., Chabannes, V., Ismail M. and Prud’homme, 
C. 2018.High-Order Finite-Element Framework for the 
Efficient Simulation of Multifluid Flows. MDPI 
Mathematics. 6(10):203. DOI: https://doi.org/ 10.3390/ 
math6100203.  

Mimeau, C. and Mortazavi, I. 2021. A review of vortex 
methods and their applications: From creation to recent 
advances. MDPI Fluids. 6(2):68. DOI: https://doi.org/ 
10.3390/fluids6020068.  

Moschandreou, TE. 2018. A new analytical procedure to 
solve two phase flow in tubes. Mathematical and 
Computational Applications. 23(2):26. DOI: 
https://doi.org/10.3390/mca23020026.  

Murea, CM. 2019. Three-dimensional simulation of 
fluid–structure interaction problems using monolithic 
semi-implicit algorithm.MDPI Fluids. 4(2):94. DOI: 
https://doi.org/10.3390/fluids4020094.  

Poiseuille, J. 1840. Récherches experiment ellessur le 
mouvement des liquids dans les tubes de 
trèspetitsdiamètres. Comptes Rendus. 11:961-967. 

Saito, H. 2021. Time-decay estimates for linearized two-
phase Navier-Stokes equations with surface tension and 
gravity. MDPI Mathematics. 9(7):761. DOI: 
https://doi.org/10.3390/math9070761.  

Sarthou, A., Vincent, S. and Caltagirone, JP. 2020. 
Consistent velocity-pressure coupling for second-order 
L2-penalty and direct-forcing methods. MDPI Fluid. 
5(2):92. DOI: https://doi.org/10.3390/fluids5020092.  

Semenov, VI. 2014. Some new integral identities for 
solenoidal fields and applications. MDPI Mathematics. 
2(1):29-36. DOI: https://doi.org/10.3390/math2010029.  

Taylor, GI. 1923. Stability of a viscous liquid contained 
between two rotating cylinders. Philos. Trans. R. Soc. 
Lond. A. 223:289-343. 

Wenig, PJ.,Ji, R., Kelm, S. and Klein, M. 2021. Towards 
uncertainty quantification of LES and URANS for the 
buoyancy-driven mixing process between two miscible 
fluids-differentially heated cavity of aspect ratio 4. MDPI 
Fluids. 6(4):161 DOI: https://doi.org/10.3390/ fluids 
6040161.  

Yakhlef, O. and Murea, CM. 2021.Numerical simulation 
of dynamic fluid-structure interaction with elastic 
structure–rigid obstacle contact.MDPI Fluids. 6(2):51. 
DOI: https://doi.org/10.3390/fluids6020051.  

 
Received: July 14, 2021; Revised: Aug 13, 2021;  

Accepted: Sept 15, 2021 

Copyright©2021, Aleksey Anatolievich Zakharenko. This is an open access article distributed 
under the Creative Commons Attribution Non Commercial License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 
 


